Sensitivity of neurons to weak electric fields.

نویسندگان

  • Joseph T Francis
  • Bruce J Gluckman
  • Steven J Schiff
چکیده

Weak electric fields modulate neuronal activity, and knowledge of the interaction threshold is important in the understanding of neuronal synchronization, in neural prosthetic design, and in the public health assessment of environmental extremely low frequency fields. Previous experimental measurements have placed the threshold between 1 and 5 mV/mm, although theory predicts that elongated neurons should have submillivolt per millimeter sensitivity near 100 microV/mm. We here provide the first experimental confirmation that neuronal networks are detectably sensitive to submillivolt per millimeter electrical fields [Gaussian pulses 26 msec full width at half-maximal, 140 microV/mm root mean square (rms), 295 microV/mm peak amplitude], an order of magnitude below previous findings, and further demonstrate that these networks are more sensitive than the average single neuron threshold (185 microV/mm rms, 394 microV/mm peak amplitude) to field modulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sensitivity of coherent oscillations in rat hippocampus to AC electric fields.

The sensitivity of brain tissue to weak extracellular electric fields is important in assessing potential public health risks of extremely low frequency (ELF) fields, and potential roles of endogenous fields in brain function. Here we determine the effect of applied electric fields on membrane potentials and coherent network oscillations. Applied DC electric fields change transmembrane potentia...

متن کامل

Response properties of electrosensory afferent fibers and secondary brain stem neurons in the paddlefish.

The passive electrosense is used by many aquatic animals to detect weak electric fields from other animals or from geoelectric sources. In contrast to the active electrosense, ;passive' means that there are no electric organs, and only external fields are measured. Electroreceptors are distributed in the skin, but are different from other skin senses because they can detect and localize sources...

متن کامل

Endogenous and exogenous electric fields as modifiers of brain activity: rational design of noninvasive brain stimulation with transcranial alternating current stimulation

Synchronized neuronal activity in the cortex generates weak electric fields that are routinely measured in humans and animal models by electroencephalography and local field potential recordings. Traditionally, these endogenous electric fields have been considered to be an epiphenomenon of brain activity. Recent work has demonstrated that active cortical networks are surprisingly susceptible to...

متن کامل

Detection of weak electric fields by sharks, rays, and skates.

The elasmobranchs-sharks, rays, and skates-can detect very weak electric fields in their aqueous environment through a complex sensory system, the ampullae of Lorenzini. The ampullae are conducting tubes that connect the surface of the animal to its interior. In the presence of an electric field, the potential of the surface of the animal will differ from that of the interior and that potential...

متن کامل

Weak Sinusoidal Electric Fields Entrain Spontaneous Ca Transients in the Dendritic Tufts of CA1 Pyramidal Cells in Rat Hippocampal Slice Preparations

Neurons might interact via electric fields and this notion has been referred to as ephaptic interaction. It has been shown that various types of ion channels are distributed along the dendrites and are capable of supporting generation of dendritic spikes. We hypothesized that generation of dendritic spikes play important roles in the ephaptic interactions either by amplifying the impact of elec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 23 19  شماره 

صفحات  -

تاریخ انتشار 2003